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Abstract. A system of semi-discrete coupled nonlinear Schrödinger equations is studied. To
show the complete integrability of the model with multiple components, we extend the discrete
version of the inverse scattering method for the single-component discrete nonlinear Schrödinger
equation proposed by Ablowitz and Ladik. By means of the extension, the initial-value problem
of the model is solved. Further, the integrals of motion and the soliton solutions are constructed
within the framework of the extension of the inverse scattering method.

1. Introduction

There has been a surge of interest in the family of nonlinear Schrödinger (NLS) equations
because of its many applications to various kinds of physical phenomena. In the remarkable
papers [1, 2] Zakharov and Shabat solved the NLS model,

i
∂q

∂t
+
∂2q

∂x2
− 2qrq = 0

i
∂r

∂t
− ∂2r

∂x2
+ 2rqr = 0

(1.1)

with r = ∓q∗ by means of the inverse scattering method (ISM). After another success of the
ISM for the modified KdV equation [3], Ablowitz, Kaup, Newell and Segur [4] unified a class
of soliton equations by employing various time dependences of the scattering problem. Their
formulation is called the AKNS formulation.

A number of authors have studied extensions of the AKNS formulation and presented
many models, which are integrable by the ISM [5, 6]. Among such models, a system of
coupled nonlinear Schrödinger (CNLS) equations

i
∂qj

∂t
+
∂2qj
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qkrk qj = 0

i
∂rj

∂t
− ∂

2rj

∂x2
+ 2

m∑
k=1

rkqk rj = 0
j = 1, 2, . . . , m (1.2)

is particularly remarkable in describing diverse physical phenomena [7–19]. Manakov
[8] considered the two-component CNLS equations (equation (1.2) withm = 2) with
rj = −q∗j (j = 1, 2) as a model for propagation of two polarized electromagnetic waves
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and applied the ISM to the model for the first time. Interest has recently focused on the two-
component CNLS equations in studying explicit solutions [10, 11], the stability of solitary
waves [14] and interactions between solitons in birefringent optical fibres [18, 19] from a
physical point of view.

Very recently, the authors proposed a new extension of the ISM and solved the coupled
modified KdV (cmKdV) equations [20]

∂ui

∂t
+ 6

(M−1∑
j,k=0

Cjkujuk

)
∂ui

∂x
+
∂3ui

∂x3
= 0 i = 0, 1, . . . ,M − 1 (1.3)

in the self-focusing case, which had been investigated by alternative approaches [21, 22]. By a
transformation of variables, this model is cast into a new coupled version of the Hirota equation
[23], which describes wave propagation in optical fibres, including higher-order effects.

On the other hand, some discrete versions of the ISM have been constructed and applied to
some discrete models [24–29]. Among those models, the semi-discrete nonlinear Schrödinger
(sd-NLS) equation found by Ablowitz and Ladik [28]

i
∂qn

∂t
+ (qn+1 + qn−1− 2qn)− qnrn(qn+1 + qn−1) = 0

i
∂rn

∂t
− (rn+1 + rn−1− 2rn) + rnqn(rn+1 + rn−1) = 0

(1.4)

has been studied extensively because of its simplicity and physical significance. They solved
(1.4) under the rapidly decreasing boundary conditions,qn, rn → 0 atn→ ±∞. The model
(1.4) was also solved under other integrable boundary conditions [30–32].

The sd-NLS equation has attracted researchers to studies on various subjects, such as
nonlinear lattices in condensed matter physics [33], phase plane patterns [34], breather
solutions [35], B̈acklund transformations [36], numerical experiments and homoclinic structure
[37–39], the dynamics of a discrete curve [40] and surfaces [41], Hamiltonian structure and
the classicalr-matrix representation [42–44] and the quantization of the model [42].

In an analogous way to the continuous theory, it is natural to consider a generalization of
the sd-NLS equation (1.4) with multiple components, namely,
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(j)
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+
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(j)
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) = 0

j = 1, 2, . . . , m.

(1.5)

We call this model the semi-discrete coupled NLS (sd-CNLS) equations. The model is expected
to be important in various applications, e.g. numerical simulations of the CNLS equations (1.2).
Hisakado [45] showed that the system (1.5) is connected with the two-dimensional Toda lattice.
AnN -soliton solution was obtained by Ohta [46]. It is noted that another scheme of integrable
semi-discretization of the CNLS equations was reported by Merolaet al [47].

In [48], the authors proposed a new extension of the discrete version of the ISM by
Ablowitz and Ladik. Applying the extension, they solved the initial-value problem of the
semi-discrete coupled modified KdV (sd-cmKdV) equations, or the coupled modified Volterra
equations [45],

∂u(i)n

∂t
=
(

1 +
M−1∑
j,k=0

Cjku
(j)
n u

(k)
n

)(
u
(i)
n+1− u(i)n−1

)
i = 0, 1, . . . ,M − 1 (1.6)
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under some appropriate conditions. A systematic procedure for constructing conservation
laws and multi-soliton solutions was also given [48]. Related results are obtained by means of
Hirota’s method [46, 49].

In the present paper, we use a transformation of variables

ine2it q
(j)
n = v(2j−2)

n + iv(2j−1)
n

(−i)ne−2it r
(j)
n = −v(2j−2)

n + iv(2j−1)
n

j = 1, 2, . . . , m (1.7)

which cast the sd-CNLS equations (1.5) into the sd-cmKdV equations (1.6) withCjk = δj,k,
u(i)n → v(i)n andM = 2m. We pull back the transformation (1.7) to the level of the Lax
representation and give an explicit Lax pair for the sd-CNLS equations (1.5) for the first
time. Following the method of [48], we can solve the initial-value problem of the sd-CNLS
equations (1.5) withr(j)n = −q(j) ∗n under the rapidly decreasing boundary conditions,q

(j)
n → 0

atn→±∞. Explicit forms of conserved quantities and theN -soliton solution are also given
within the framework of the ISM.

The paper consists of the following. In section 2, we introduce a Lax pair for the semi-
discrete matrix NLS equation. Considering a reduction to the sd-CNLS equations, we obtain
the Lax formulation and conservation laws for the sd-CNLS equations. In section 3, we
perform the ISM for the sd-CNLS equations with directing our attention to the transformation
(1.7). The initial-value problem is solved and theN -soliton solution is given. The last section
is devoted to discussions.

The main idea of the paper is based on a matrix representation and some properties of
the Clifford algebra, whose elements are anti-commutative. The proof of relations used in the
paper is given in [48].

2. Lax representation and conservation laws

2.1. Lax pair for the semi-discrete matrix NLS equation

We begin with a set of auxiliary linear equations

9n+1 = Ln9n 9n,t = Mn9n. (2.1)

Here9n is a 2l-component column vector, andLn,Mn are 2l×2l matrices. The compatibility
condition of (2.1) is given by

Ln,t +LnMn −Mn+1Ln = O. (2.2)

We callLn andMn the Lax pair and (2.2) (a semi-discrete version of) the zero-curvature
condition, or simply, the Lax equation. Let us introduce the following form for the Lax pair:

Ln = z
[
F1 O

O O

]
+

[
O F1Qn

F2Rn O

]
+

1

z

[
O O

O F2

]
=
[
zF1 F1Qn

F2Rn F2/z

]
(2.3)

Mn = z2

[
iI O

O O

]
+ z

[
O iQn

iF2Rn−1F1 O

]
+

[ −iQnF2Rn−1F1 + iH1 O

O iRnF1Qn−1F2 + iH2

]
+

1

z

[
O −iF1Qn−1F2

−iRn O

]
+

1

z2

[
O O

O −iI

]
= i

[
z2I −QnF2Rn−1F1 +H1 zQn − (1/z)F1Qn−1F2

zF2Rn−1F1− Rn/z −I/z2 +RnF1Qn−1F2 +H2

]
(2.4)
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wherez is the spectral parameter which is time independent.I is thel× l unit matrix,Qn and
Rn arel × l matrices. The constant matricesF1, F2,H1 andH2 are assumed to be Hermitian
and satisfy

(F1)
2 = (F2)

2 = I [F1, H1] = [F2, H2] = O. (2.5)

Here [· , ·] denotes the commutator. Substituting (2.3) and (2.4) into (2.2), we obtain a set of
matrix equations

iQn,t + F1(Qn+1 +Qn−1)F2 +H1Qn −QnH2 − F1Qn+1F2RnQn

−QnRnF1Qn−1F2 = O
iRn,t − F2(Rn+1 +Rn−1)F1− RnH1 +H2Rn + F2Rn+1F1QnRn

+RnQnF2Rn−1F1 = O.

(2.6)

We call this model the semi-discrete (sd-) matrix NLS equation. The integrable model (2.6)
with F1 = F2 = I,H1 = −I,H2 = I was found by Ablowitzet al [50, 51].

2.2. Conservation laws

In this subsection, we present a method to construct local conservation laws for the sd-matrix
NLS equation (2.6), which is a discrete version of the method in the continuous theory [20].
We start from an explicit expression of (2.1),[
91n+1

92n+1

]
=
[
F1n Sn

Tn F2n

] [
91n

92n

] [
91n

92n

]
t

=
[
An Bn

Cn Dn

] [
91n

92n

]
(2.7)

where all the entries in vectors and matrices are assumed to bel × l square matrices.
Introducing anl × l square matrix0n by

0n ≡ 92n9
−1
1n (2.8)

we can show the following relations from (2.2) and (2.7) [48]:

(Sn0n + F1n)t (Sn0n + F1n)
−1 = An+1− (Sn0n + F1n)An(Sn0n + F1n)

−1

+Bn+10n+1− (Sn0n + F1n)Bn0n(Sn0n + F1n)
−1 (2.9)

0n+1 = (Tn + F2n0n)(F1n + Sn0n)
−1. (2.10)

Taking the trace on both sides of (2.9), we obtain

tr{log(Sn0n + F1n)}t = tr(An+1 +Bn+10n+1)− tr(An +Bn0n). (2.11)

Assuming the form ofLn as (2.3), we have

F1n = zF1 F2n = 1

z
F2 Sn = F1Qn Tn = F2Rn. (2.12)

Then (2.11) and (2.10) are transformed into{
tr log

(
I +

1

z
Qn0n

)}
t

= tr(An+1 +Bn+10n+1)− tr(An +Bn0n) (2.13)

zQn0n = QnF2Rn−1F1 +
1

z
QnF2Q

−1
n−1(Qn−10n−1)F1− (Qn0n)F1(Qn−10n−1)F1. (2.14)

Note that (2.13) has the form of the local conservation law. This suggests that tr{log(I +
Qn0n/z)} is a generator of the conserved densities for (2.6). We substitute the expansion of
Qn0n with respect to 1/z,

Qn0
(−)
n =

∞∑
j=1

1

z2j−1
f (j)n (2.15)
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into (2.14). Then we obtain a recursion formula forf (j)n ,

f (j)n = QnF2Rn−1F1δj,1 +QnF2Q
−1
n−1f

(j−1)
n−1 F1−

j−1∑
k=1

f (k)n F1f
(j−k)
n−1 F1 j = 1, 2, . . . .

(2.16)

Equation (2.16) yieldsf (j)n , for instance,

f (1)n = QnF2Rn−1F1

f (2)n = QnRn−2 −QnF2Rn−1Qn−1F2Rn−2.

We substitute (2.15) into tr{log(I +Qn0
(−)
n /z)} and expand it with respect to 1/z,

tr

{
log

(
I +

1

z2
f (1)n +

1

z4
f (2)n +

1

z6
f (3)n + · · ·

)}
= tr

{
1

z2
f (1)n +

1

z4

[
f (2)n − 1

2(f
(1)
n )2

]
+ · · ·

}
.

Thus, the first two conserved densities given by this expansion are

J (−1)
n = tr

{
f (1)n

} = tr{QnF2Rn−1F1} (2.17a)

J (−2)
n = tr

{
f (2)n − 1

2(f
(1)
n )2

}
= tr

{
QnRn−2 −QnF2Rn−1Qn−1F2Rn−2 − 1

2(QnF2Rn−1F1)
2
}
. (2.17b)

Similarly, we expandQn0n with respect toz,

Qn0
(+)
n =

∞∑
j=1

z2j−1g(j)n . (2.18)

Substitution of (2.18) into (2.14) yields a recursion formula forg
(j)
n ,

g(j)n = −QnRnδj,1 +QnF2Q
−1
n+1g

(j−1)
n+1 F1 +QnF2Q

−1
n+1

j−1∑
k=1

g
(k)
n+1F1g

(j−k)
n j = 1, 2, . . . .

(2.19)

From formula (2.19), the first three of the coefficientsg(j)n are given by

g(1)n = −QnRn

g(2)n = −QnF2Rn+1F1(I −QnRn)

g(3)n = −QnRn+2(I −QnRn) + (QnF2Rn+1F1)
2(I −QnRn)

+QnRn+2F1Qn+1Rn+1F1(I −QnRn).

We substitute (2.18) into tr{log(I +Qn0
(+)
n /z)} and expand it with respect toz,

tr
{

log
(
I + g(1)n + z2g(2)n + z4g(3)n + · · · )} = tr

{
log

(
I + g(1)n

)
+ z2g(2)n

(
I + g(1)n

)−1

+z4
[
g(3)n

(
I + g(1)n

)−1− 1
2

{
g(2)n

(
I + g(1)n

)−1}2]
+ · · ·}.

Thus, the first three conserved densities in this expansion are

J (0)n = tr
{

log
(
I + g(1)n

)} = tr
{

log
(
I −QnRn

)}
(2.20a)

J (1)n = tr
{
g(2)n

(
I + g(1)n

)−1} = tr
{−QnF2Rn+1F1

}
(2.20b)

J (2)n = tr
[
g(3)n

(
I + g(1)n

)−1− 1
2

{
g(2)n

(
I + g(1)n

)−1}2]
= tr

{−QnRn+2 +QnRn+2F1Qn+1Rn+1F1 + 1
2(QnF2Rn+1F1)

2
}
. (2.20c)

The generator of the conserved densities, tr{log(I +Qn0n/z)}, is shown to be related with
a time-independent subset of scattering data defined later (see the appendix).
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2.3. Reduction of the Lax pair and the conservation laws for the semi-discrete coupled NLS
equations

In this subsection, we show a reduction of the sd-matrix NLS equations to the sd-CNLS
equations. We recursively define 2m−1 × 2m−1 matricesF (m)1 , F (m)2 , H(m)

1 , H(m)
2 , Q(m)

n and
R(m)n by

F
(1)
1 = 1 F

(1)
2 = 1 H

(1)
1 = −1 H

(1)
2 = 1 (2.21)

F
(m+1)
1 =

[
F
(m)
1

−F (m)2

]
F
(m+1)
2 =

[
F
(m)
2

F
(m)
1

]
(2.22)

H
(m+1)
1 =

[
H
(m)
1 − I2m−1

H
(m)
2 + I2m−1

]
(2.23)

H
(m+1)
2 =

[
H
(m)
2 − I2m−1

H
(m)
1 + I2m−1

]
(2.24)

Q(1)
n = q(1)n R(1)n = r(1)n (2.25)

Q(m+1)
n =

[
Q(m)
n q(m+1)

n I2m−1

r(m+1)
n I2m−1 −R(m)n

]
R(m+1)
n =

[
R(m)n q(m+1)

n I2m−1

r(m+1)
n I2m−1 −Q(m)

n

]
.

(2.26)

HereI2m−1 is the 2m−1 × 2m−1 unit matrix. It is readily seen that (2.5) is satisfied. For the
matrices defined by (2.21)–(2.26), we can prove the following relations:

Q(m)
n R(m)n = R(m)n Q(m)

n =
m∑
j=1

q(j)n r(j)n I2m−1 (2.27)

H
(m)
1 Q(m)

n −Q(m)
n H

(m)
2 = −2F (m)1 Q(m)

n F
(m)
2

−R(m)n H
(m)
1 +H(m)

2 R(m)n = 2F (m)2 R(m)n F
(m)
1

by induction. Then substitutingQ(m)
n , R(m)n , etc. intoQn, Rn, etc. in the sd-matrix NLS

equation (2.6), we obtain the sd-CNLS equations

i
∂q

(j)
n

∂t
+ (q(j)n+1 + q(j)n−1− 2q(j)n )−

m∑
k=1

q(k)n r
(k)
n (q

(j)

n+1 + q(j)n−1) = 0

i
∂r

(j)
n

∂t
− (r(j)n+1 + r(j)n−1− 2r(j)n ) +

m∑
k=1

r(k)n q(k)n (r
(j)

n+1 + r(j)n−1) = 0

j = 1, 2, . . . , m.

(2.28)

For instance, the Lax matrixLn for the two-component sd-CNLS equations ((2.28) withm = 2)
is given by

Ln =


z 0 q(1)n q(2)n

0 −z −r(2)n r(1)n

r(1)n q(2)n 1/z 0

r(2)n −q(1)n 0 1/z

 . (2.29)

In what follows, we setr(j)n = −q(j)∗n (j = 1, 2, . . . , m) and consider a self-focusing case
of the sd-CNLS equations,

i
∂q

(j)
n

∂t
+ (q(j)n+1 + q(j)n−1− 2q(j)n ) +

m∑
k=1

|q(k)n |2 (q(j)n+1 + q(j)n−1) = 0 j = 1, 2, . . . , m. (2.30)
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In this case, the relation (2.27) forQ(m)
n andR(m)n becomes

Q(m)
n R(m)n = R(m)n Q(m)

n = −
m∑
j=1

|q(j)n |2 I2m−1. (2.31)

In addition, a simple relation betweenQ(m)
n andR(m)n holds,

R(m)n = −Q(m) †
n (2.32)

where the symbol † denotes the Hermitian conjugate. The relations (2.31) and (2.32) play an
essential role in the ISM.

Because the sd-CNLS equations are given as a reduction of the sd-matrix NLS
equation (2.6), the results in section 2.2 assure the existence of an infinite number of
conservation laws for the sd-CNLS equations. Explicit forms of the first four conserved
densities for the sd-CNLS equations (2.28) are given by

log

(
1−

∑
j

q(j)n r(j)n

)
(2.33)

e4it (−1)n
(
q
(j)

n+1q
(k)
n − q(j)n q

(k)
n+1

) ∀ j, k
e−4it (−1)n

(
r
(j)

n+1r
(k)
n − r(j)n r

(k)
n+1

) ∀ j, k
q
(j)

n+1r
(k)
n + q(j)n r

(k)
n+1 ∀ j, k∑

j

q
(j)

n+1r
(j)
n

∑
j

q(j)n r
(j)

n+1

(2.34)

(
1−

∑
j

q
(j)

n+1r
(j)

n+1

)∑
j

(
q
(j)

n+2r
(j)
n + q(j)n r

(j)

n+2

)
− 1

2

{∑
j

(
q
(j)

n+1r
(j)
n − q(j)n r

(j)

n+1

)}2

−
∑
j

q
(j)

n+1r
(j)

n+1

∑
j

q(j)n r(j)n (2.35)(
1−

∑
j

q
(j)

n+2r
(j)

n+2

)(
1−

∑
j

q
(j)

n+1r
(j)

n+1

)∑
j

(
q
(j)

n+3r
(j)
n − q(j)n r

(j)

n+3

)− (1−
∑
j

q
(j)

n+1r
(j)

n+1

)
×
∑
j

(
q
(j)

n+2r
(j)
n + q(j)n r

(j)

n+2

){∑
j

(
q
(j)

n+1r
(j)
n − q(j)n r

(j)

n+1

)
+
∑
j

(
q
(j)

n+2r
(j)

n+1− q(j)n+1r
(j)

n+2

)}−(1−
∑
j

q
(j)

n+1r
(j)

n+1

){∑
j

(
q
(j)

n+1r
(j)
n − q(j)n r

(j)

n+1

)
×
∑
j

q
(j)

n+2r
(j)

n+2 +
∑
j

(
q
(j)

n+2r
(j)

n+1− q(j)n+1r
(j)

n+2

)∑
j

q(j)n r(j)n

}

+1
3

{∑
j

(
q
(j)

n+1r
(j)
n − q(j)n r

(j)

n+1

)}3

+
∑
j

(
q
(j)

n+1r
(j)
n − q(j)n r

(j)

n+1

)∑
j

q
(j)

n+1r
(j)

n+1

∑
j

q(j)n r(j)n . (2.36)

A straightforward calculation shows that all the entries in (2.34) are conserved densities. It
is noted that the lower two densities in (2.34) correspond to the conserved densitiesqj rk and∑

j qj rj for the continuous CNLS equations (1.2).



2246 T Tsuchida et al

It is also remarkable that higher than second conserved densities for (2.28) have expressions
such as

i−1∏
k=1

(
1−

∑
j

q
(j)

n+kr
(j)

n+k

)∑
j

{
q
(j)

n+i r
(j)
n + (−1)iq(j)n r

(j)

n+i

}
+ · · · (i > 2)

which split into two independent densities with simpler structures,
i−1∏
k=1

(
1− qn+krn+k

)
qn+i rn + · · · (i > 2)

and
i−1∏
k=1

(
1− qn+krn+k

)
qnrn+i + · · · (i > 2)

in the single-component case (cf equation (1.4)). This fact implies that a direct recursion
formula of the conserved densities for the sd-CNLS equations might be, if it exists, very
complicated. We have obtained the first four conserved densities concisely by use of the
recursion formula of the conserved densities for the sd-matrix NLS equation (2.6).

3. Inverse scattering method

In this section we investigate the scattering and inverse scattering problems associated with
the 2l × 2l (l = 2m−1) matrix (2.3),[

91n+1

92n+1

]
=
[
zF1 F1Qn

F2Rn F2/z

] [
91n

92n

]
(3.1)

to solve the sd-CNLS equations (2.30). Here and hereafter the superscripts(m) of F (m)1 , F (m)2 ,
Q(m)
n andR(m)n are often omitted for convenience. To simplify the analysis, we consider a

gauge transformation

8n = gn9n gn =
[

eiπn/4(F1)
ne−iH1t

e−iπ(n−1)/4(F2)
ne−iH2t

]
. (3.2)

Then the scattering problem (3.1) is changed into[
81n+1

82n+1

]
=
[
zI Q̃n

R̃n I/z

][
81n

82n

]
(3.3)

where the transformed spectral parameter and potentials are

z = zeiπ/4 Q̃n = in(F1)
n e−iH1tQn eiH2t (F2)

n

R̃n = (−i)n(F2)
n e−iH2tRn eiH1t (F1)

n.
(3.4)

The constraints (2.32) and (2.31) lead to those forQ̃n andR̃n,

R̃n = −Q̃†
n Q̃nR̃n = R̃nQ̃n = −

m∑
j=1

|q(j)n |2 I ≡ −σnI. (3.5)

We assume the rapidly decreasing boundary conditions,

Q̃n, R̃n→ O as n→±∞. (3.6)

Considering the time dependence of the scattering data, we can solve the initial-value problem
of the sd-CNLS equations (2.30). Some of the main ideas in the following are an extension and
a modification of the analyses for the matrix KdV equation [52], the matrix mKdV equations
and the cmKdV equations [20] (see [48] for details).
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3.1. Scattering problem

Let 8(1)
n (z) and8(2)

n (z) be matrix solutions of (3.3) composed of 2l (= 2m) rows and
l (= 2m−1) columns. We introduce the following matrix function of8(1) and8(2):

Wn

[
8(1), 8(2)

] ≡ 8(1) †
n

(
1

z∗

)
8(2)
n (z). (3.7)

This satisfies a recursion relation

Wn+1
[
8(1), 8(2)

] = (I − Q̃nR̃n
)
Wn

[
8(1), 8(2)

] = ρnWn

[
8(1), 8(2)

]
(3.8)

whereρn is defined by

ρn ≡ 1 +σn = 1 +
m∑
j=1

|q(j)n |2. (3.9)

We introduce Jost functionsφn, φ̄n andψn, ψ̄n which satisfy the boundary conditions

φn ∼
[
I

O

]
zn φ̄n ∼

[
O

−I
]
z−n as n→−∞ (3.10)

and

ψn ∼
[
O

I

]
z−n ψ̄n ∼

[
I

O

]
zn as n→ +∞. (3.11)

HereO andI are, respectively, thel × l zero matrix and thel × l unit matrix. We can show
thatφnz−n,ψnzn are analytic outside the unit circle (|z| > 1) on the complexz plane, and that
φ̄nz

n, ψ̄nz−n are analytic inside the unit circle (|z| < 1) on thez plane, whenQ̃n andR̃n go
toO sufficiently rapidly asn→±∞. We assume the following summation representation of
the Jost functionsψn andψ̄n:

ψn =
∞∑
n′=n

z−n
′
K(n, n′) ψ̄n =

∞∑
n′=n

zn
′
K̄(n, n′) (3.12)

whereK(n, n′) andK̄(n, n′) arez-independent column vectors which consist of twol × l
square matrices,

K(n, n′) =
[
K1(n, n

′)
K2(n, n

′)

]
K̄(n, n′) =

[
K̄1(n, n

′)
K̄2(n, n

′)

]
.

We substitute (3.12) into (3.3). Equating the terms with the same power ofz, we obtain

K1(n, n) = O (3.13a)

K2(n, n) =
∞∏
i=n
(I − R̃iQ̃i)

−1 =
∞∏
i=n
ρ−1
i I (3.13b)

Q̃nK2(n, n) = −K1(n, n + 1) (3.13c)

and

K̄2(n, n) = O (3.14a)

K̄1(n, n) =
∞∏
i=n
(I − Q̃iR̃i)

−1 =
∞∏
i=n
ρ−1
i I (3.14b)

R̃nK̄1(n, n) = −K̄2(n, n + 1). (3.14c)
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Since a pair of the Jost functionsφn andφ̄n, orψn andψ̄n, forms a fundamental system of the
solutions of the scattering problem (3.3), we can set

φn(z) = ψ̄n(z)A(z) +ψn(z) B(z) (3.15a)

φ̄n(z) = ψ̄n(z) B̄(z)− ψn(z) Ā(z). (3.15b)

Here the coefficients{A(z), Ā(z), B(z), B̄(z)} aren-independentl × l matrices which are
called scattering data.

To derive the formula of the ISM rigorously and concisely, we assume thatQ̃n andR̃n are
on compact support. The result is, however, valid for larger classes of the potentialsQ̃n and
R̃n. Using the asymptotic behaviours of the Jost functions (3.10), (3.11) and the relation (3.8),
we obtain

A(z) = W∞[ψ̄, φ] Ā(z) = −W∞[ψ, φ̄] (3.16)

and

A†

(
1

z∗

)
A(z) +B†

(
1

z∗

)
B(z) = Ā†

(
1

z∗

)
Ā(z) + B̄†

(
1

z∗

)
B̄(z) =

∞∏
n=−∞

ρn I (3.17a)

A†

(
1

z∗

)
B̄(z) = B†

(
1

z∗

)
Ā(z). (3.17b)

The expressions (3.16) show thatA(z) andĀ(z) are, respectively, analytic outside the unit
circle (|z| > 1) and inside the unit circle (|z| < 1).

3.2. Gel’fand–Levitan–Marchenko equations

Multiplying A(z)−1 andĀ(z)−1 from the right to (3.15a) and (3.15b), respectively, we have

φn(z)A(z)
−1 = ψ̄n(z) +ψn(z) B(z)A(z)

−1 (3.18a)

φ̄n(z) Ā(z)
−1 = −ψn(z) + ψ̄n(z) B̄(z) Ā(z)

−1. (3.18b)

We substitute (3.12) into the right-hand side of (3.18a) and operate on both sides

1

2π i

∮
C

dz z−m−1 (m > n)

whereC denotes a contour along the unit circle|z| = 1. It should be noticed thatφnz−n and
A(z) are analytic outside the unit circleC, |z| > 1. The inverse ofA(z), i.e.A(z)−1, is given
by

A(z)−1 = 1

detA(z)
Ã(z)

whereÃ denotes the cofactor matrix ofA. We assume that 1/ detA(z) is regular on the unit
circleC and has 2N isolated simple poles{z1, z2, . . . , z2N } in |z| > 1 (see (3.27) for the reason
why we choose the number of poles to be 2N ). We set

J∞,n = lim
z→∞φnz

−nA(z)−1

and use the residue theorem. After some computation, we arrive at the discrete version of the
Gel’fand–Levitan–Marchenko equation,

K̄(n,m) +
∞∑
n′=n

K(n, n′) F (n′ +m) = J∞,n δn,m (m > n). (3.19)
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HereF(n′ +m) is defined by

F(n′ +m) ≡ 1

2π i

∮
C

B(z)A(z)−1z−(n
′+m)−1dz +

2N∑
j=1

Cjz
−(n′+m)−1
j (3.20)

whereCj is the residue matrix ofB(z)A(z)−1 at z = zj .
Similarly, we operate

1

2π i

∮
C

dz zm−1 (m > n)

on both sides of (3.18b) substituting (3.12). As has been mentioned previously,φ̄nz
n andĀ(z)

are analytic inside the unit circleC, |z| < 1. We assume that 1/ detĀ(z) is regular on the unit
circleC and has 2̄N isolated simple poles{z̄1, z̄2, . . . , z̄2N̄ } in |z| < 1. We set

J̄0,n = lim
z→0

φ̄nz
nĀ(z)−1

and use the residue theorem. Finally, we obtain the counterpart of the discrete Gel’fand–
Levitan–Marchenko equation,

K(n,m)−
∞∑
n′=n

K̄(n, n′) F̄ (n′ +m) = −J̄0,nδn,m (m > n). (3.21)

HereF̄ (n′ +m) is defined by

F̄ (n′ +m) ≡ 1

2π i

∮
C

B̄(z) Ā(z)−1zn
′+m−1 dz−

2N̄∑
k=1

C̄k z̄
n′+m−1
k . (3.22)

The matrixC̄k is the residue matrix of̄B(z) Ā(z)−1 at z = z̄k.
From (3.13b) and (3.14b), it is natural to set

K(n,m) = κ(n,m)
∞∏
i=n
(I − R̃iQ̃i)

−1 = κ(n,m)
∞∏
i=n
ρ−1
i (m > n)

K̄(n,m) = κ̄(n,m)
∞∏
i=n
(I − Q̃iR̃i)

−1 = κ̄(n,m)
∞∏
i=n
ρ−1
i (m > n).

Hereκ(n,m) andκ̄(n,m) are column vectors whose elements arel × l square matrices,

κ(n,m) =
[
κ1(n,m)

κ2(n,m)

]
κ̄(n,m) =

[
κ̄1(n,m)

κ̄2(n,m)

]
.

In particular,κ(n, n) andκ̄(n, n) are given by

κ(n, n) =
[
O

I

]
κ̄(n, n) =

[
I

O

]
.

Due to (3.13) and (3.14), the potentialsQ̃n andR̃n are given by

−κ1(n, n + 1) = Q̃n (3.23)

−κ̄2(n, n + 1) = R̃n. (3.24)

In terms ofκ andκ̄, the Gel’fand–Levitan–Marchenko equations (3.19) and (3.21) form > n

are rewritten as

κ̄(n,m) +

[
O

I

]
F(n +m) +

∞∑
n′=n+1

κ(n, n′) F (n′ +m) =
[
O

O

]
(m > n) (3.25)

κ(n,m)−
[
I

O

]
F̄ (n +m)−

∞∑
n′=n+1

κ̄(n, n′) F̄ (n′ +m) =
[
O

O

]
(m > n). (3.26)
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It should be noted that the scattering problem (3.3) gives the symmetry properties of the
scattering data. For instance, we have

detA(z) = detA(−z) detĀ(z) = detĀ(−z) (3.27)

which means that the eigenvalueszj , z̄k should appear as ‘positive–negative’ pairs. Further,
we have

B(z)A(z)−1 = −B(−z)A(−z)−1 B̄(z) Ā(z)−1 = −B̄(−z) Ā(−z)−1. (3.28)

Therefore, we can simplify the forms ofF andF̄ as

F(n +m) =
{

2FR(n +m) m = n + 2j − 1

O m = n + 2j
j > 1

FR(n) = 1

2π i

∫
CR

B(z)A(z)−1z−n−1 dz +
N∑
j=1

Cjz
−n−1
j

and

F̄ (n +m) =
{

2F̄R(n +m) m = n + 2j − 1

O m = n + 2j
j > 1

F̄R(n) = 1

2π i

∫
CR

B̄(z) Ā(z)−1zn−1 dz−
N̄∑
k=1

C̄k z̄
n−1
k .

HereCR denotes the right-half portion of the unit circle contourC.
The symmetry properties ofF andF̄ give rise to those ofκ andκ̄. From (3.25) and (3.26),

we obtain

κ1(n,m) =
{
κ1R(n,m) m = n + 2j − 1

O m = n + 2j
j > 1 (3.29a)

κ̄2(n,m) =
{
κ̄2R(n,m) m = n + 2j − 1

O m = n + 2j
j > 1. (3.29b)

Considering the above symmetry properties, we obtain the simplified Gel’fand–Levitan–
Marchenko equations forκ1R andκ̄2R,

κ1R(n,m) = 2F̄R(n +m)− 4
∞∑

n′=n+2
n′−n=even

∞∑
n′′=n+1
n′′−n=odd

κ1R(n, n
′′) FR(n′′ + n′) F̄R(n′ +m)

(m > n,m− n = odd) (3.30)

κ̄2R(n,m) = −2FR(n +m)− 4
∞∑

n′=n+2
n′−n=even

∞∑
n′′=n+1
n′′−n=odd

κ̄2R(n, n
′′) F̄R(n′′ + n′) FR(n′ +m).

(m > n,m− n = odd) (3.31)

3.3. Time dependence of the scattering data

Under the rapidly decreasing boundary conditions (3.6), the asymptotic form of the Lax matrix
M̃n for the sd-CNLS equations (2.30) after the gauge transformation (3.2) is given by

M̃n = gnMng
−1
n + gn, tg

−1
n →

[
z2I O

O I/z2

]
as n→±∞.
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We define time-dependent Jost functions by

φ(t)n ≡ φnez
2t ∼

[
I

O

]
znez

2t φ̄(t)n ≡ φ̄net/z
2 ∼

[
O

−I
]
z−net/z

2
as n→−∞.

From the relations

φ
(t)
n,t = M̃nφ

(t)
n φ̄

(t)
n,t = M̃nφ̄

(t)
n

we obtain

φn,t = (M̃n − z2I )φn φ̄n,t =
(
M̃n − 1

z2
I

)
φ̄n. (3.32)

We put the definitions of the time-dependent scattering data,

φn(z) = ψ̄n(z)A(z, t) +ψn(z) B(z, t)

φ̄n(z) = ψ̄n(z) B̄(z, t)− ψn(z) Ā(z, t)
into (3.32). Then taking the limitn→ +∞, we obtain the time dependences ofA, BA−1, Cj
andĀ, B̄Ā−1, C̄k. They are given by, respectively,

A(z, t) = A(z, 0)
B(z, t) A(z, t)−1 = B(z, 0) A(z,0)−1e−(z

2−1/z2)t

Cj (t) = Cj(0) e−(z
2
j−1/z2

j )t

(3.34)

and

Ā(z, t) = Ā(z, 0)
B̄(z, t) Ā(z, t)−1 = B̄(z, 0) Ā(z, 0)−1e(z

2−1/z2)t

C̄k(t) = C̄k(0) e(z̄
2
k−1/z̄2

k )t .

(3.35)

The above results give explicitly time-dependent forms ofFR(n, t) andF̄R(n, t) for oddn.

3.4. Initial-value problem

Thanks to the constraints̃Rn = −Q̃†
n andQ̃nR̃n = R̃nQ̃n = −σnI , we have some additional

relations besides (3.27) and (3.28). The first additional relation is

detĀ(z) =
{

detA

(
1

z∗

)}∗
(3.36)

which is proved in [48]. This relation restricts the numbers and the positions of the poles of
1/ detA(z) and 1/ detĀ(z), i.e.

N̄ = N z̄k = 1

z∗k
. (3.37)

Due to (3.17b), we have the second additional relations,

B̄(z) Ā(z)−1 = {B(z)A(z)−1}† (on |z| = 1) (3.38a)

C̄k = − 1

z∗ 2
k

C
†
k . (3.38b)

The relations (3.37) and (3.38) give a relation betweenF̄R(n, t) andFR(n, t),

F̄R(n, t) = FR(n, t)†. (3.39)
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In order to make the ISM applicable to the sd-CNLS equations, we have to take account of the
internal symmetries of the potentials̃Qn andR̃n. According to (2.25), (2.26) and (3.4), the
potentialsQ̃n andR̃n are defined recursively by

Q̃(1)
n = ine2it q(1)n R̃(1)n = (−i)ne−2it r(1)n

Q̃(m+1)
n =

[
Q̃(m)
n ine2it q(m+1)

n I2m−1

(−i)ne−2it r(m+1)
n I2m−1 −R̃(m)n

]

R̃(m+1)
n =

[
R̃(m)n ine2it q(m+1)

n I2m−1

(−i)ne−2it r(m+1)
n I2m−1 −Q̃(m)

n

]
.

If we set

ine2it q(j)n = v(2j−2)
n + iv(2j−1)

n

(−i)ne−2it r(j)n = −v(2j−2)
n + iv(2j−1)

n

j = 1, 2, . . . , m (3.40)

Q̃(m)
n andR̃(m)n for m > 2 are written as

Q̃(m)
n = v(0)n 1l +

2m−1∑
k=1

v(k)n ek R̃(m)n = −v(0)n 1l +
2m−1∑
k=1

v(k)n ek. (3.41)

Here 1l is the 2m−1 × 2m−1 unit matrix, which has been denoted byI2m−1. Because of
r
(j)
n = −q(j)∗n , v(0)n andv(k)n should be real. Substitution of (3.41) into the relations (3.5)

yields the following important relations for 2m−1× 2m−1 matrices{ei}:
{ei, ej }+ = −2δi,j1l (3.42)

e
†
k = −ek. (3.43)

Here {· , ·}+ denotes the anti-commutator. It is stressed that expressions (3.41) with
conditions (3.42) and (3.43) are only a sufficient (i.e. not necessary) condition of (3.5).

Considering the above symmetries of the potentialsQ̃(m)
n andR̃(m)n for m > 2, we can

show the following properties of the scattering data.

Proposition 3.4.1. (a) The determinant ofA(z) and the determinant ofA(z∗) are related by

detA(z) = {detA(z∗)}∗. (3.44)

Thus the poles of1/ detA(z) in |z| > 1 appear as pairs situated symmetric with respect
to the real axis. Therefore, we replace2N in section 3.2 with4N and choose the values
of 2N poles in|z| > 1, Rez > 0 as

z2j−1 = ξj + iηj = aj eiθj

z2j = z∗2j−1 = ξj − iηj = aj e−iθj j = 1, 2, . . . , N (3.45)

whereaj > 1, 0 < θj 6 π/2 for θj 6= 0. The conditions (3.45) should be interpreted as
follows. If θj = 0, the corresponding pole does not need its counterpart. The values of
the remaining2N poles in|z| > 1, Rez 6 0 are given by

z2N+k = −zk k = 1, 2, . . . ,2N.

(b) The reflection coefficientB(z)A(z)−1 is expressed as

B(z)A(z)−1 = r(0)1l +
2m−1∑
k=1

r(k)ek. (3.46)

Herer(0) andr(k) are complex functions ofz andt which satisfy

r(0)(z∗) = r(0)(z)∗ r(k)(z∗) = r(k)(z)∗. (3.47)
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(c) The residue matrices{C1, C2, . . . , C2N } are expressed as

C2j−1 = c(0)j 1l +
2m−1∑
k=1

c
(k)
j ek

C2j = c(0) ∗j 1l +
2m−1∑
k=1

c
(k) ∗
j ek

j = 1, 2, . . . , N (3.48)

with complex functions of timet , c(0)j andc(k)j .
The statements (a)–(c) are proved essentially in the same way as in [48] and therefore
their proofs are omitted.

Taking account of the above conditions, we obtain explicit expressions ofFR(n, t) and
F̄R(n, t) for oddn,

FR(n, t) = 1

2π i

∫
CR

B(z)A(z)−1z−n−1dz +
2N∑
j=1

Cjz
−n−1
j

= 1

2π i

∫
CUR

{(
r(0)z−n−1 + r(0) ∗zn−1

)
1l +

2m−1∑
k=1

(
r(k)z−n−1 + r(k) ∗zn−1

)
ek

}
dz

+
N∑
j=1

{(
c
(0)
j z
−n−1
j + c(0) ∗j z∗−n−1

j

)
1l +

2m−1∑
k=1

(
c
(k)
j z
−n−1
j + c(k) ∗j z∗−n−1

j

)
ek

}
(3.49)

F̄R(n, t) = FR(n, t)†

= 1

2π i

∫
CUR

{(
r(0)z−n−1 + r(0) ∗zn−1

)
1l−

2m−1∑
k=1

(
r(k)z−n−1 + r(k) ∗zn−1

)
ek

}
dz

+
N∑
j=1

{(
c
(0)
j z
−n−1
j + c(0) ∗j z∗−n−1

j

)
1l−

2m−1∑
k=1

(
c
(k)
j z
−n−1
j + c(k) ∗j z∗−n−1

j

)
ek

}
(3.50)

whereCUR denotes a contour along the quadrant (upper-right portion) of the unit circleC.
We see that the coefficients of 1l and{ek} in (3.49) and (3.50) are real. Thus, a pair ofF̄R and
−FR is expressed in the same form as (3.41), as is expected from the viewpoint of successive
approximations for the Gel’fand–Levitan–Marchenko equations.

BecauseB(z)A(z)−1 andCj depend ont as (3.34), the time dependences ofr(0), r(k) and
c
(0)
j , c(k)j are given by

r(0)(z, t) = r(0)(z, 0) e−(z
2−1/z2)t r(k)(z, t) = r(k)(z, 0) e−(z

2−1/z2)t (3.51)

c
(0)
j (t) = c(0)j (0) e−(z

2
j−1/z2

j )t c
(k)
j (t) = c(k)j (0) e−(z

2
j−1/z2

j )t . (3.52)

Combining (3.30) and (3.31) with (3.39), we arrive at

κ1R(n,m; t) = 2FR(n +m, t)†− 4
∞∑
l1=1

∞∑
l2=1

κ1R(n, n + 2l2 − 1; t) FR(2n + 2l2 + 2l1− 1, t)

×FR(n + 2l1 +m, t)† (3.53)

κ̄2R(n,m; t) = −2FR(n +m, t)− 4
∞∑
l1=1

∞∑
l2=1

κ̄2R(n, n + 2l2 − 1; t) FR(2n + 2l2 + 2l1− 1, t)†

×FR(n + 2l1 +m, t) (3.54)

for m > n,m− n = odd, whereFR(n, t) is given by (3.49).
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Now the initial-value problem of the sd-CNLS equations (2.30) can be solved in the
following steps.

(a) For given potentials att = 0, Q̃n(0) andR̃n(0) which are expressed as (3.41), we solve
the scattering problem (3.3), and obtain the scattering data{B(z)A(z)−1, zj , Cj } or, more
concretely{r(0), r(k), zj , c(0)j , c(k)j }.

(b) The time dependence of the scattering data is given by (3.34) (or (3.51) and (3.52)).
(c) We substitute the time dependence of the scattering data into the Gel’fand–Levitan–

Marchenko equations (3.53) and (3.54). Solving the equations, we reconstruct the time-
dependent potentials,

Q̃n(t) = −κ1R(n, n + 1; t) R̃n(t) = −κ̄2R(n, n + 1; t).
This solution proves directly the complete integrability of the sd-CNLS equations (2.30).

3.5. Soliton solutions

To construct soliton solutions of the sd-CNLS equations, we assume the reflection-free
condition, i.e.B(z) = B̄(z) = O on |z| = 1. Then,FR(n, t) and F̄R(n, t) for odd n are
given by

FR(n, t) =
2N∑
j=1

Cj(t) z
−n−1
j Cj (t) = Cj(0) e−(z

2
j−1/z2

j )t (3.55)

F̄R(n, t) = −
2N∑
k=1

C̄k(t) z̄
n−1
k C̄k(t) = C̄k(0) e(z̄

2
k−1/z̄2

k )t . (3.56)

To solve (3.30) (or equation (3.53)) with (3.55) and (3.56), we set

κ1R(n,m; t) =
2N∑
k=1

PkC̄k(t) z̄
n+m−1
k (m− n = odd). (3.57)

Substituting (3.57) into (3.30) or (3.53), we have

Pk − 4
2N∑
l=1

2N∑
j=1

(
z̄l

zj

)2n
z̄2
k(

z2
j − z̄2

k

)(
z2
j − z̄2

l

)PlC̄l(t) Cj (t) = −2I. (3.58)

In terms of a matrixS whose elements are defined by

Slk ≡ δl,kI − 4
2N∑
j=1

(
z̄l

zj

)2n
z̄2
k(

z2
j − z̄2

k

)(
z2
j − z̄2

l

) C̄l(t) Cj (t)
= δl,kI + 4

2N∑
j=1

1

z2n
j z
∗ 2n
l

(
z2
j z
∗ 2
k − 1

)(
z2
j z
∗ 2
l − 1

)Cl(t)†Cj(t) 16 l, k 6 2N

equation (3.58) is expressed by

(P1 P2 · · · P2N)

 S11 · · · S1 2N

...
. . .

...

S2N 1 · · · S2N 2N

 = −2( I I · · · I︸ ︷︷ ︸
2N

). (3.59)

Similarly, we solve (3.31) (or equation (3.54)) with (3.55) and (3.56). Substitution of

κ̄2R(n,m; t) =
2N∑
j=1

P̄jCj (t) z
−(n+m)−1
j (m− n = odd) (3.60)
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into (3.31) or (3.54) gives

P̄j − 4
2N∑
l=1

2N∑
k=1

z̄2n+2
k

z2n
l

1(
z2
l − z̄2

k

)(
z2
j − z̄2

k

) P̄lCl(t) C̄k(t) = −2I. (3.61)

Using a matrixS̄,

S̄lk ≡ δl,kI − 4
2N∑
j=1

z̄2n+2
j

z2n
l

1(
z2
l − z̄2

j

)(
z2
k − z̄2

j

)Cl(t) C̄j (t)
= δl,kI + 4

2N∑
j=1

1

z2n
l z
∗ 2n
j

(
z2
l z
∗ 2
j − 1

)(
z2
kz
∗ 2
j − 1

)Cl(t) Cj (t)† 16 l, k 6 2N

we rewrite (3.61) as

(P̄1P̄2 · · · P̄2N)

 S̄11 · · · S̄1 2N

...
. . .

...

S̄2N 1 · · · S̄2N 2N

 = −2( I I · · · I︸ ︷︷ ︸
2N

). (3.62)

Equations (3.59) and (3.62) are readily solved. Thus theN -soliton solution of the sd-CNLS
equations (2.30) is given by

Q̃(m)
n (t) = in(F1)

n e−iH1tQ(m)
n eiH2t (F2)

n = −κ1R(n, n + 1; t)

= −2 ( I I · · · I︸ ︷︷ ︸
2N

) S−1


C1(t)

†/z∗ 2n+2
1

C2(t)
†/z∗ 2n+2

2
...

C2N(t)
†/z∗ 2n+2

2N

 (3.63a)

R̃(m)n (t) = (−i)n(F2)
n e−iH2tR(m)n eiH1t (F1)

n = −κ̄2R(n, n + 1; t)

= 2 ( I I · · · I︸ ︷︷ ︸
2N

) S̄−1


C1(t)/z

2n+2
1

C2(t)/z
2n+2
2

...

C2N(t)/z
2n+2
2N

 . (3.63b)

Strictly speaking, equation (3.63) includes breathers besides solitons. In order to extract pure
soliton solutions, we assume that each soliton seen in

∑
j |q(j)n (t)|2 has a time-independent

shape. By calculating an asymptotic behaviour of the tails of solitons atn → +∞, we obtain
the corresponding necessary conditions

C2j−1C̄2j = C̄2jC2j−1 = C2j C̄2j−1 = C̄2j−1C2j = O j = 1, 2, . . . , N (3.64)

on the residue matrices. Equation (3.64) is translated explicitly into

2m−1∑
i=0

(
c
(i)
j

)2 = 0 j = 1, 2, . . . , N. (3.65)
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As an example, we write down a pure one-soliton solution. ChooseN = 1 and set

z̄1 = 1

z∗1
= e−W+iθ W > 0

C̄1 = − 1

z∗ 2
1

C
†
1 = −

1

z∗ 2
1

(
c
(0) ∗
1 1l−

2m−1∑
k=1

c
(k) ∗
1 ek

)
≡ c̄(0)1 1l +

2m−1∑
k=1

c̄
(k)
1 ek

C̄2 = c̄(0) ∗1 1l +
2m−1∑
k=1

c̄
(k) ∗
1 ek

eφ0 = sinh 2W√√√√2
2m−1∑
j=0

|c̄(j)1 (0)|2
. (3.66)

Then, from (3.63) we obtain

Q̃(m)
n (t) = sech

{
2nW + 2(sinh 2W cos 2θ)t + φ0

} sinh 2W√√√√2
2m−1∑
j=0

|c̄(j)1 (0)|2

×{C̄1(0) e2i{nθ+(cosh 2W sin 2θ)t} + C̄2(0) e−2i{nθ+(cosh 2W sin 2θ)t}} (3.67a)

R̃(m)n (t) = −Q̃(m)
n (t)†. (3.67b)

It is straightforward to show that (3.67) can be expressed as (3.41) with real coefficientsv(i)n (t)

of 1l and{ek}. Thus we have checked in terms of the inverse problem that the conditions (3.41)
or consequently (3.5) are satisfied under proposition 3.4.1 and the conditions (3.64), in the
case of the one-soliton solution.

By introducing a new set of constants by

αi ≡ c̄(2i−2)
1 (0) + ic̄(2i−1)

1 (0)

βi ≡ c̄(2i−2)
1 (0)− ic̄(2i−1)

1 (0)
i = 1, 2, . . . , m

we obtain a simplified expression of the pure one-soliton solution of the sd-CNLS
equations (2.30), namely,

q(i)n (t) = sech
{
2nW + 2(sinh 2W cos 2θ)t + φ0

} sinh 2W√√√√ m∑
j=1

(|αj |2 + |βj |2)

×[αi e2i{n(θ−π/4)+(cosh 2W sin 2θ−1)t} + β∗i e−2i{n(θ+π/4)+(cosh 2W sin 2θ+1)t}]
i = 1, 2, . . . , m. (3.68)

Here the condition (3.65) forN = 1 is cast into the orthogonality condition,
m∑
i=1

αiβi = 0.

The soliton solution (3.68) exhibits a novel property as a solution of NLS-type equations.
Because there are two carrier waves in one envelope soliton, the shape of soliton observed
in |q(i)n (t)|2 periodically oscillates in time. It is observed for (3.68) that the summation of
|q(i)n (t)|2 with respect to components,i (= 1, 2, . . . , m)

m∑
i=1

|q(i)n (t)|2 = sinh2 2W sech2
{
2nW + 2(sinh 2W cos 2θ)t + φ0

}
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has a time-independent shape, as is expected. This fact suggests that the conditions (3.64) are
necessary and sufficient to give pure soliton solutions even in theN -soliton case.

The continuum limit which reduces (3.68) into the one-soliton solution of the continuous
CNLS equations can be seen as follows. We denote byh the (dimensionless) lattice spacing
of the sd-CNLS model. We rescalet by

t → 1

h2
t

and set

q(i)n (t) = hui(x, t) x = nh
W = hη θ − π

4
= −hξ

αi = hγi βi = 0.

If we take the continuum limith→ 0, the one-soliton solution (3.68) with (3.66) is transformed
into

ui(x, t) = 2η sech{2ηx + 8ηξt + φ0} γi√√√√ m∑
j=1

|γj |2
e−2iξx−4i(ξ2−η2)t i = 1, 2, . . . , m

with

eφ0 = 2η√√√√ m∑
j=1

|γj |2
.

This is indeed the one-soliton solution of the continuous CNLS equations,

i
∂ui

∂t
+
∂2ui

∂x2
+ 2

m∑
j=1

|uj |2 ui = 0 i = 1, 2, . . . , m. (3.69)

It is noteworthy that eitherαi = 0 (i = 1, 2, . . . , m) or βi = 0 (i = 1, 2, . . . , m) is necessary
for us to take the continuum limit. This reflects the fact that the pureN -soliton solution of
the sd-CNLS equations (2.30) includes more arbitrary constants than theN -soliton solution
of the continuous CNLS equations (3.69). It has its origin in the oscillation of solitons seen in
each component|q(i)n (t)|2. In this sense, the structure of the pure soliton solution may be more
similar to that of the cmKdV equations (1.3) rather than to that of the CNLS equations (3.69).

Ohta [46] obtained anN -soliton solution for the sd-CNLS equations in the Pfaffian
representations. TheN -soliton solution (3.63) with the constraints (3.64) contains more
parameters than Ohta’sN -soliton solution. Therefore, it is reasonable to conjecture that our
solution reduces to Ohta’s by a particular choice of those parameters.

We wish to show that (3.63a) and (3.63b) are expressed as

Q̃(m)
n (t) = v(0)n (t)1l +

2m−1∑
k=1

v(k)n (t) ek (3.70a)

R̃(m)n (t) = −v(0)n (t)1l +
2m−1∑
k=1

v(k)n (t) ek (3.70b)

without using the products of{ei} such aseiej , eiej ek. Further, we expectv(0)n , v(k)n to be real in
(3.70a) and (3.70b). As mentioned previously, ‘(3.70)→ (3.5)’ holds. Thus, equation (3.5) is
automatically satisfied if we can show (3.70). So far we have proved either (3.70a) or (3.70b)
only for m = 2. However, the result for the one-soliton solution implies that both of (3.70)
are simultaneously satisfied under proposition 3.4.1.
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4. Discussions

We have investigated the semi-discrete coupled nonlinear Schrödinger (sd-CNLS) equations.
The analysis from the ISM point of view is given for the first time in this paper. A previous paper
[48] dealt with a new extension of the semi-discrete version of the ISM proposed by Ablowitz
and Ladik to solve the semi-discrete coupled modified KdV (sd-cmKdV) equations (1.6). In
this paper, we have developed the extension with the help of the transformation (1.7) to solve
the model considered with arbitrarily multiple components.

We should comment on the Lax formulations and the ISM for both the sd-cmKdV equations
and the sd-CNLS equations, which may spotlight mysterious structure of discrete soliton
equations.

First, there is an essential difference between the form of theLn-matrix for the sd-CNLS
equations and that for the sd-cmKdV equations in the case ofm > 2 (M > 4). It seems
that the scattering problem for the sd-CNLS equations associated with theLn-matrix, e.g.
equation (2.29), does not agree with the scattering problem for the CNLS equations [8, 53] in
the continuum limit (z = e−iζh+iϕ, h → 0). The situation is not observed for the continuum
limit of the sd-cmKdV equations. This difference can be understood by considering the
continuum limit of the semi-discrete coupled Hirota equations. A detailed explanation will be
reported in a subsequent paper.

Secondly, it is obvious that (2.6) does not generally allow us to assume the reduction
Rn = ±Q†

n , because of the order of the products. To consider the reductionRn = ±Q†
n , we

should impose the additional restrictionQnRn = RnQn = scalar onQn andRn. Thus, both
(2.31) and (2.32) play a crucial role in our theory, which is peculiar to the discrete theory with
multiple components.

Thirdly, as for the consistency of theN -soliton solution, it is difficult to prove both of
equation (3.70) from the restrictions on the scattering data (3.45)–(3.48). In the continuous
theory [20], (3.70) is easily proved at least for 2× 2 matricesQ(2) andR(2). However, even in
this case, it is not so easy to prove both of (3.70) in the discrete theory.

Fourthly, due to the relation (3.44), we always have to consider pairs of poles as scattering
data in the ISM. The constraint gives the novel structure of solutions, ‘two carrier waves in
one envelope soliton’. This situation is closely related to the high internal symmetries of
Q(m)
n andR(m)n which may give a rich variety of dynamical behaviours in the multi-field soliton

systems. As an influence of this fact, we need to assume additional conditions (3.64) to exclude
breather-type solutions.

The sd-CNLS equations can be cast into alternative expressions by some transformations.
We set a pair of variablesq(j)n andr(j)n to be constant in (1.5), for instance,q(m)n r(m)n = 1 and
consider a transformation of variables,

q
(j)
n e2it → q

(j)
n

r
(j)
n e−2it → r

(j)
n

j = 1, 2, . . . , m− 1.

Then, we obtain a simplified deformation of (1.5),

i
∂q

(j)
n

∂t
=

m−1∑
k=1

q(k)n r
(k)
n

(
q
(j)

n+1 + q(j)n−1

)
i
∂r

(j)
n

∂t
= −

m−1∑
k=1

r(k)n q(k)n
(
r
(j)

n+1 + r(j)n−1

) j = 1, 2, . . . , m− 1.
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To consider a multi-field extension of the full-discrete NLS equation [5, 6, 44] by our
method, we need to modify theLn-matrix (2.3) appropriately. The details of the analysis will
be reported in a separate paper.
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Appendix. Trace formulae

In this appendix, we show interrelations between the generator of the conserved densities
tr{log(I +Qn0n/z)} for (2.6) in section 2.2 and the scattering data in section 3.

Let us recall that we have transformed the scattering problem (3.1) into the scattering
problem (3.3) by the gauge transformation (3.2). For the moment, we do not impose restrictions
such as (2.31) and (2.32) (or equation (3.5)) on square matricesQn andRn and consider the sd-
matrix NLS equation (2.6). The conditions (2.5) are assumed. We supplement some definitions
and relations. First, we define the inverse of (3.15) by

ψ̄n(z) = φn(z)A(z) + φ̄n(z)B(z)
ψn(z) = φn(z) B̄(z)− φ̄n(z) Ā(z).

Secondly, the generator of the conserved densities is invariant under the gauge transformation
(3.2):

tr log

(
I +

1

z
Q̃n82n8

−1
1n

)
= tr log

{
I +

1

zeiπ/4
eiπn/2(F1)

n e−iH1tQn eiH2t (F2)
n

×e−iπ(n−1)/4(F2)
n e−iH2t92n 9

−1
1n eiH1t (F1)

n e−iπn/4

}
= tr log

(
I +

1

z
Qn92n9

−1
1n

)
. (A.1)

Thirdly, the asymptotic behaviours of the Jost functionsφn andψ̄n are given by

φn ≡
[
φ1n

φ2n

]
∼
[
I

O

]
zn as n→−∞

∼
[
A(z) zn

B(z) z−n

]
as n→ +∞

ψ̄n ≡
[
ψ̄1n

ψ̄2n

]
∼
[
A(z) zn
−B(z) z−n

]
as n→−∞

∼
[
I

O

]
zn as n→ +∞.
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Further, we can prove thatφ2nφ
−1
1n is a polynomial in 1/z andψ̄2nψ̄

−1
1n is a polynomial inz.

Therefore, we can replaceφ2nφ
−1
1n andψ̄2nψ̄

−1
1n by 0(−)n and0(+)n in section 2.2 respectively,

except for the difference in gauge (see equation (3.2)). It is important that the ratios of two
components,φ2nφ

−1
1n andψ̄2nψ̄

−1
1n , are invariant when we consider the time-dependent Jost

functionsφ(t)n ≡ φnez
2t andψ̄(t)

n ≡ ψ̄nez
2t .

Now, we can relate the scattering data with the generator of the conserved densities. The
determinant ofA(z), detA(z), is expressed as

log detA(z) = tr logA(z) = tr
∞∑

n=−∞

[
log(φ1n+1z

−n−1)− log(φ1nz
−n)
]

= tr
∞∑

n=−∞
log
[
φ1n+1φ

−1
1n z
−1
]

= tr
∞∑

n=−∞
log

[
I +

1

z
Q̃nφ2nφ

−1
1n

]
= tr

∞∑
n=−∞

log

[
I +

1

z
Qn0

(−)
n

]
= tr

∞∑
n=−∞

[
1

z2
QnF2Rn−1F1 +

1

z4

{
QnRn−2

−QnF2Rn−1Qn−1F2Rn−2 − 1
2(QnF2Rn−1F1)

2
}

+ · · ·
]
. (A.2)

Similarly, detA(z) is rewritten as

log detA(z) = − tr
∞∑

n=−∞

[
log(ψ̄1n+1z

−n−1)− log(ψ̄1nz
−n)
]

= − tr
∞∑

n=−∞
log

[
I +

1

z
Q̃nψ̄2nψ̄

−1
1n

]
= − tr

∞∑
n=−∞

log

[
I +

1

z
Qn0

(+)
n

]
= tr

∞∑
n=−∞

[− log(I −QnRn) + z2QnF2Rn+1F1

+z4
{
QnRn+2−QnRn+2F1Qn+1Rn+1F1− 1

2(QnF2Rn+1F1)
2
}

+ · · ·]. (A.3)

Here the time independence ofA(z),At (z) = O, is proved in the same manner as in section 3.3.
It is now clear how the scattering data are expressed in terms of the integrals of motion for
the sd-matrix NLS equation. However, it should be stressed that the above expansions do not
yield local conservation laws. The method presented in section 2.2 is useful because it gives
not only the densities but also the corresponding fluxes.

Conversely, the integrals of motion can be expressed in terms of the scattering data. For
simplicity, we assume that

(a) Q̃n andR̃n are expressed as (3.41). Thus, proposition 3.4.1 holds.
(b) detA(z) and detĀ(z) have 4N simple zeros outside and inside the unit circleC,

respectively. None of them lies on the unit circleC.
(c) detA(z) and detĀ(z) approach 1 rapidly as|z| → ∞ andz→ 0, respectively.
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Then, we can derive the following expansion for the sd-CNLS equations (2.30):

log detA(z) =
∞∑
n=1

1

zn

[
1

n

4N∑
j=1

{(
1

z∗j

)n
− znj

}
+

1

2π i

∮
C

wn−1 log det(A(w) Ā(w)) dw
]

=
∞∑
k=1

1

z2k

[
1

k

2N∑
j=1

{(
1

z∗j

)2k

− z2k
j

}
+

1

π i

∫
CR

w2k−1 log det(A(w) Ā(w)) dw

]

=
∞∑
k=1

1

z2k

[
1

k

N∑
j=1

{(
1

zj

)2k

+

(
1

z∗j

)2k

− z2k
j − z∗ 2k

j

}
+

1

π i

∫
CUR

(
w2k−1 +w−2k−1

)
log | detA(w)|2 dw

]
. (A.4)

The coefficients of 1/z2k (k = 1, 2, . . .) give an infinite number of the integrals of motion,
which we call thetrace formulae. Here,CR andCUR denote the right-half portion and the
upper-right portion of the unit circleC, respectively, as is mentioned in section 3. It is recalled
thatz in (A.2) andz in (A.4) have the differenceπ/4 in their phases (see equation (3.4)). The
determinant ofĀ(z) is related to the determinant ofA(z) by (3.36). It can also be shown that
detA(z) and detĀ(z) are connected by

log detA(z) = −
∞∑

n=−∞
log det(I −QnRn) + log detĀ(z).

Thus, we can directly obtain expansions of log detĀ(z) and log detA(z)with respect toz from
(A.4).

A derivation of (A.4) is omitted because it is analogous to that in the continuous theory
[5, 56, 57]. Related results were also obtained by Kodama [58].
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